Chiara Manzini, Ph.D.


Dr. M. Chiara Manzini is an Assistant Professor at the George Washington University in the GW Institute for Neuroscience and the Department of Pharmacology and Physiology. The main goal of her research is to bridge the genetics and mechanisms of disease to identify genes that are essential for human brain function and to define the molecular causes of neurodevelopmental disorders. Her work focuses on how specific perturbations of intracellular signaling regulate neuronal differentiation and circuit formation and how disruption of signaling mechanisms leads to disorders such as intellectual disability (ID) and autism. The Manzini lab combines human genetics with molecular, cellular, and behavioral approaches in murine and zebrafish models to link human genetics to neuronal cell biology and animal behavior.

Dr. Manzini was initially trained in Human Genetics at the University of Pavia in Italy, then received her Ph.D. in Neurobiology and Behavior at Columbia University working with Dr. Carol Mason. Her doctoral studies in neuronal cell biology explored how brain circuits are assembled during development in both normal mice and mouse models of neonatal epilepsy. With this combined expertise, she then joined Dr. Chris Walsh’s group at Boston Children’s Hospital/Harvard Medical School to identify and characterize novel disease genes mutated in brain malformations and ID. Her postdoctoral work focused on highly heterogeneous genetic disorders affecting cognitive function and caused by recessive mutations to discover true loss-of-function phenotypes that could be tractable in animal models.

In her independent research laboratory, Dr. Manzini conducts two major projects stemming for her postdoctoral work. One main area of research is congenital muscular dystrophies (CMDs) associated with ID and brain malformations. CMDs are debilitating pediatric disorders often severely affecting brain development. Understanding the additional role of genes mutated in CMD in the brain is critical for therapy development and for affected families. Severe ID will continue to negatively affect care and quality of life, even when muscle function is improved by new therapeutic approaches. Dr. Manzini has led multiple studies to identify novel genes and mutations for CMD and her group has developed zebrafish models to determine how different mutations affect the brain and muscle. This work has been funded by the Muscular Dystrophy Association, the March of Dimes and pilot projects from the Clinical and Translational Science Institute at Children’s National.

A second focus of the Manzini lab is the role of intracellular signaling in cognitive function. After identifying mutations in CC2D1A in ID and autism spectrum disorder, she became interested in the function of this gene because of its role in several pathways important for neuronal differentiation. Preliminary studies from her group and others have led to the hypothesis that CC2D1A is a scaffold protein regulating the localization of intracellular signaling to membranes and that it may do so in a sex-specific manner. Mice lacking Cc2d1a show striking male bias in behavioral deficits and male-specific molecular changes, that could inform us of why autism appears to be more prevalent in boys. Understanding how CC2D1A functions may explain how male bias is established in autism spectrum disorder and other neurodevelopmental diseases. This project has been funded through a K99/R00 award and an R01 grant from the National Institutes of Health.

Dr. Manzini is very excited to be moving to Rutgers-Robert Wood Johnson School of Medicine in summer 2019, to expand the lab and develop new projects in neurodevelopmental disorders affecting cognitive function. Her group is looking to welcome students, postdoctoral fellows, and research assistants who like to work in a multidisciplinary environment and are excited about translational research. Dr. Manzini is passionate about trainee career development and has been working with the Society for Neuroscience as a member of the Professional Development Committee to publish multiple resources for students and postdocs to aid career transitions and improve the mentor-mentee relationships.

You can find more about the lab at and follow Dr. Manzini on Twitter at @MChiaraManzini. Also, take a look at some of the career development toolkits Dr. Manzini helped develop at SfN on transitions from PhD to Postdoc and transitioning out of your Postdoc.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s